
Quality Software Page 1 of 3

Quality Software
I suspect that, in the near future, many types of software will become
commoditized, just as many types of computer hardware have. The open-source
phenomenon is leading the way, with Linux and Apache ascendant on the
Internet. Regardless of the motives of the partisans of open-source software, the
motives of the important business users of these open-source applications are
clear: They want cheap software with the same quality levels as the commercial
alternatives.

Basic economics tells us, for commodities, prices and profit margins are low,
features are standardized, and quality is an absolute must for participation in the
market. Failure to deliver consistent quality damages a business’ ability to
compete in a commoditized market. To deliver quality software, we need to start
with a working definition of what quality software is.

In addition to outsourcing, assessments, and consulting, my company, RBCS,
offers training courses for software and systems professionals. Most of those
courses focus on testing. We have taught thousands of attendees in dozens of
countries around the world. Towards the beginning of these courses, we often
ask people, “For the systems you build, what comes to mind when you think
about the word, ‘quality’?”

We usually separate the responses into two main groups: outcomes and
characteristics. By outcomes, I mean what would the result be, after the software
was delivered. By characteristics, I mean what would be true about the software
that was delivered. Let’s look at each group.

In the outcomes group, most attendee responses usually boil down to one of two
definitions:

• The software conforms its specification.

• The software fits its various uses and purposes.

The first definition closely follows Phil Crosby’s definition of quality, as given in
his book Quality is Free. The second closely follows J.M. Juran’s definition, found
in his book Planning for Quality.

Juran’s definition is my favorite. Fully articulated, it means the software has
those attributes, characteristics, and behaviors that satisfy the customers, users,
and other stakeholders, and has few if any of those attributes, characteristics, and
behaviors that dissatisfy them.

The first definition sounds good initially, but turns out to be a will-o’-the-wisp
when applied to software. According to Capers Jones’ studies, almost half of all
defects are introduced during requirements and design specification. Testing the

 Copyright © 2006 Rex Black All Rights Reserved

Quality Software Page 2 of 3

quality of software against the specification only is like measuring with a flawed
yardstick.

However, how do we measure against the “fit for use and purpose” definition,
either? This is where the “characteristics” part of the discussion comes in.

Depending on the software or system in question, some course attendees list
characteristics like reliability and performance. Some list usability and
scalability. Some list data integrity. Interestingly, many fail to mention
functionality; i.e., the ability to fulfill correctly the stakeholders’ business needs
for the software. When we mention that to attendees, the reaction is usually, “Of
course!” It seems some people think that some quality characteristics—and, of
course, the need to test them—are simply obvious.

Unfortunately, what’s obvious to some people is not obvious to all, and what
perhaps should be obvious to project participants is sometimes forgotten
entirely. So, determining which quality characteristics are important, and how
important they are relative to each other, is crucial to the proper focus of the
testing effort. At RBCS, when we manage testing projects, we typically use a
primarily risk-based testing strategy. In the RBCS approach to risk-based testing,
we start by analyzing, for each possible quality characteristic, the various risks to
the quality of the system. For each of these quality risks, we then determine
what the level of risk is. This allows us to focus our test effort, and prioritize our
tests, based on the risk posed to the system.

Of course, determining which quality characteristics are important, and how
important they are, is not only crucial to testing, but also to the rest of the project
team. Quality cannot be tested into software at the end of the project. Simply
grinding out as many bugs as possible, in addition to being inefficient, will not
result in software that yields the delightful quality that we experience with the
most well designed products that we use.

So, where can you find a generic list of quality characteristics? Some companies
use the ISO 9126 standard. This standard specifies six main quality
characteristics—functionality, reliability, usability, efficiency, maintainability,
and portability—and, for each characteristic, two or more subcharacteristics. For
example, response time (performance) and resource usage are both
subcharacteristics of efficiency.

I have found that a generic checklist of about two-dozen quality risk areas has
worked well, too. At RBCS, we use this list to structure my conversations with
project stakeholders about quality, particularly during quality risk analysis.
What could go wrong in each quality risk area? How likely is that particular
quality risk? How much trouble would it cause? Whether you use the RBCS
checklist or the ISO 9126 standard, either will provide a framework for
understanding system quality and how to test it.

 Copyright © 2006 Rex Black All Rights Reserved

Quality Software Page 3 of 3

This brings us to my final point. In about one presentation out of ten, someone
will respond to the question about quality in a totally different way, giving a
response that I would classify in a knowledge group. By knowledge, I mean how
would you know whether the software had quality. A typical response in this
group might be, “Software that was thoroughly tested in a way that covered all
important quality risks, with few if any blocked tests, critical failures, or high-
priority bugs at the conclusion of testing.” These attendees understand that,
while testing cannot change the quality of software, testing can offer the
organization the opportunity to correct quality problems, and can build
confidence where the system is observed to work properly. As a test
professional who believes that testing plays an essential role in delivering quality
products, I find this to be not only a good response, but a professionally
gratifying one, too.

Author Bio
Rex Black is President of RBCS (www.rexblackconsulting.com), a leader in the
area of testing and quality assurance. RBCS has over a hundred clients in about
twenty countries around the world, offering them services like training,
assessment, consulting, staff augmentation, and outsourcing. Rex’s four books,
Managing the Testing Process, Critical Testing Processes, Foundations of Software
Testing, and Pragmatic Software Testing, have reached over 30,000 readers on six
continents, but the penguins in Antarctica still won’t buy them.

Resources
You can read more about quality risk analysis and risk-based testing in my
books, Managing the Testing Process, 2e, Critical Testing Processes, Foundations of
Software Testing, and Pragmatic Software Testing. You can also read the articles
“Investing in Testing: The Risks to System Quality” and “Quality Risk Analysis”
posted on the Library page of our Web site, www.rexblackconsulting.com. You
can find the generic checklist of quality risks I mentioned on the Library page as
well.

